ON THE REDUCIBILITY OF LINEAR GROUPS*

BY

LEONARD EUGENE DICKSON

The object of this note is a two-fold generalization of Loewy's theorem proved in these Transactions, vol. 4, pp. 171-177. His theorem may be conveniently stated as follows: If R is the domain of all real numbers and C the domain of all complex numbers, any group of linear homogeneous transformations with coefficients in R which is irreducible in R, but reducible in C, can be transformed linearly into a decomposable group $\begin{pmatrix} G & 0 \\ 0 & \overline{G} \end{pmatrix}$, where G and \overline{G} are two groups irreducible in C, with coefficients not all in R, such that the coefficients in every transformation of \overline{G} are the conjugate imaginaries of the corresponding coefficients for G.

In seeking a generalization, we note that the domain C may be considered as derived from R by the adjunction of a root i of the quadratic equation $x^2+1=0$ belonging to and irreducible in R. For the generalization, R is replaced by a general domain F (or field not having a modulus) and R(i) is replaced by the domain $F(\rho_0)$ given by the extension of F by the adjunction of a root ρ_0 of an equation f(x)=0 of degree r belonging to and irreducible in F. The generalization will therefore be two-fold. Let the roots of f(x)=0 be ρ_0 , ρ_1 , ..., ρ_{r-1} . If G_{11} is a group of transformations with coefficients $C_{ij}(\rho_0)$ in the domain $F(\rho_0)$, let $G_{11}^{(s)}$ denote the group of transformations with the coefficients $C_{ij}(\rho_s)$; in particular, $G_{11}^{(0)}=G_{11}$. The coefficients of G_{11} , G_{11}^{\prime} , ..., $G_{11}^{(r-1)}$ are thus conjugate with respect to F. The generalized theorem is as follows:

Let G be a group of linear homogeneous transformations with coefficients in a domain F, such that G is irreducible in F but is reducible in the domain $F(\rho_0)$ given by the extension of F by the adjunction of a root ρ_0 of an equation belonging to and irreducible in F and having as its roots $\rho_0, \rho_1, \dots, \rho_{r-1}$. Then G can be transformed linearly into a decomposable group *

^{*}Presented to the Society at the Boston summer meeting, August 31-September 1, 1903. Received for publication April 27, 1903.

[†] When the irreducible equation is a normal equation, the groups $G_{11}^{(s)}$ ($s = 0, 1, \dots, r - 1$) are all irreducible in the same (normal) domain. LOEWY's case furnishes an example.

where $G_{11}^{(s)}$ is a group irreducible in $F(\rho_s)$ with coefficients not all in F, and $G_{11}, G_{11}', \cdots, G_{11}'^{(r-1)}$ are conjugate with respect to F.

The proof starts as in Loewy, §1. The first variation * occurs at the bottom of p. 173; we now take r-fold decomposable matrices

$$H = \begin{bmatrix} G & 0 & \cdots & 0 \\ 0 & G & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & G \end{bmatrix}, \qquad Q = \begin{bmatrix} P & 0 & \cdots & 0 \\ 0 & P' & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P^{(r-1)} \end{bmatrix}.$$

Corresponding changes are to be made in the first two statements on p. 174. Thus, the diagonal groups in (6) are to be replaced by

$$G_{11}, G_{22}, G'_{11}, G'_{22}, G''_{11}, G''_{22}, \cdots, G^{(r-1)}_{11}, G^{(r-1)}_{22}.$$

In place of the transformation † (7), we have

(7')
$$y_{jk} = \sum_{i=1}^{n} C_{ki}^{(j)} y_{ji}^{*} \qquad (k=1, \dots, n; j=0, \dots, r-1),$$

where $C_{ki}^{(j)}$ is a rational function of ho_j with coefficients in F, and

(7_a)
$$C_{ki}^{(j)} = 0$$
 $(k=1, \dots, m; i=m+1, \dots, n; j=0, \dots, r-1).$

Introduce two pairs each of rn new variables defined by

$$(8') y_{sk} = Y_{0k} + \rho_s Y_{1k} + \rho_s^2 Y_{2k} + \dots + \rho_s^{r-1} Y_{r-1k}$$

$$(8'_1) y_{sk}^* = Y_{0k}^* + \rho_s Y_{1k}^* + \rho_s^2 Y_{2k}^* + \dots + \rho_s^{r-1} Y_{r-1k}^*$$

$$(s = 0, \dots, r-1)$$

$$(k = 1, \dots, n)$$

This may be done since the determinant

$$\Delta \equiv \begin{vmatrix} 1 & \rho_0 & \rho_0^2 & \cdots & \rho_0^{n-1} \\ 1 & \rho_1 & \rho_1^2 & \cdots & \rho_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \rho_{r-1} & \rho_{r-1}^2 & \cdots & \rho_{r-1}^{n-1} \end{vmatrix} = \Pi\left(\rho_i - \rho_j\right) \neq 0.$$

^{*}The statement on p. 173, lines 7-8, is apparently not used later; a proof follows readily from the main theorem under consideration.

[†] LOEWY's notation is unwieldy even in his simple case. I write y_{0k} , y_{1k} for his y_k , z_k . The transformed variables are marked * instead of being primed.

Solving (8') for fixed k, while $s = 0, \dots, r - 1$, we get

where

$$D_{ts} \equiv \begin{vmatrix} 1 & \rho_0 & \cdots & \rho_0^{t-1} & \rho_0^{t+1} & \cdots & \rho_0^{r-1} \\ 1 & \rho_1 & \cdots & \rho_1^{t-1} & \rho_1^{t+1} & \cdots & \rho_1^{r-1} \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 1 & \rho_{s-1} & \cdots & \rho_{s-1}^{t-1} & \rho_{s-1}^{t+1} & \cdots & \rho_{s-1}^{r-1} \\ 1 & \rho_{s+1} & \cdots & \rho_{s+1}^{t-1} & \rho_{s+1}^{t+1} & \cdots & \rho_{s+1}^{r-1} \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 1 & \rho_{r-1} & \cdots & \rho_{r-1}^{t-1} & \rho_{r-1}^{t+1} & \cdots & \rho_{r-1}^{r-1} \end{vmatrix}.$$

Substituting for y_{sk} in (e) its value from (7') and then eliminating y_{si}^* by $(8'_1)$, we obtain

(9)
$$Y_{tk} = \sum_{\substack{i=1,\dots,n\\l=0}} a_{li}^{tk} Y_{li}^{*} \quad (k=1,\dots,n; t=0,\dots,r-1),$$

where

$$\alpha_{li}^{tk} \equiv \frac{(-1)^t}{\Delta} \sum_{s=0}^{r-1} (-1)^s D_{ts} C_{ki}^{(s)} \rho_s^l.$$

The coefficients of transformation (9) belong to the domain F. It suffices to show that each α_{li}^{ik} is unaltered by the interchange of ρ_0 with ρ_j (j being any one of the series $1, 2, \dots, r-1$), since it is then a symmetric function of ρ_0 , ρ_1 , \dots , ρ_{r-1} with coefficients in F. To show that, for example, it is unaltered by the interchange of ρ_0 with ρ_1 , we note that under this interchange, D_{i0} and D_{i1} are interchanged, $D_{ii}(s>1)$ is changed into D_{ii} while $C_{ki}^{(0)} \equiv C_{ki}(\rho_0)$ and $C_{ki}^{(1)} \equiv C_{ki}(\rho_1)$ are interchanged, and $C_{ki}^{(g)}(s>1)$ is unaltered. Hence the factor of α given by the sum is changed in sign; likewise the factor $1/\Delta$.

Moreover, from (7_a) follows at once

$$\alpha_{li}^{tk} = 0$$
 $(i = m+1, \dots, n; k=1, \dots, m; t, l=0, 1, \dots, r-1).$

The group of transformations (9) is therefore of Loewy's form (10), \bar{H}_{11} being always a matrix of rm rows and rm columns. The proof is then readily completed as in Loewy's case (bottom of p. 175 and 176).

THE UNIVERSITY OF CHICAGO, April 27, 1903.